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Abstract

Automated market makers (AMM) are an important part of the DeFi space and
are attracting a lot of attention from developers and researchers. There are more
than 1,000 DEXes with $14B total liquidity what leads to tough competition.

In this work, we examine the impact of various external and internal parameters
on the profitability and competitiveness of an AMM under ideal market conditions.
We also propose a number of different approaches to managing liquidity pool fee
value, including a dynamic fee mechanism. The influence of the parameters, as well
as the effectiveness of the fee management algorithms, are tested using the model of
ideal market. This article demonstrates the impact of market conditions, blockchain
features and the fees used on the income of liquidity providers, which is one of the
key metrics for DEX. Based on our research AMM developers could improve the
existing solutions and design new one.

1 Introduction

Automated market makers (AMMs) currently remain one of the most important com-
ponents of the DeFi sphere. Decentralized applications that enable simple and efficient
exchange of digital assets are extremely popular both among end users and various pro-
tocols built on blockchains.

Traditional AMMs use liquidity to operate, which is represented in the form of reserves
of corresponding tokens provided by liquidity providers. Protocols are interested in in-
creasing the amount of liquidity, as this leads to increased efficiency of AMM, increased
attractiveness for users, improved trading volume and protocol income indicators. There-
fore, in the face of fierce competition between decentralized exchanges, a key factor for
the success of the protocol is attracting more liquidity, which ultimately comes down to
increasing the profitability of providing liquidity.



Historically, competition between AMMs has led to the creation and development of
various solutions aimed at attracting more liquidity and using it more efficiently. One
of the solutions was additional incentives for liquidity providers using additional rewards
(farming and its variants). This approach attracts liquidity, but requires the use of pro-
tocol’s or project’s own funds, or the redistribution of protocol income. For this reason,
additional incentives are difficult to maintain consistently over the long term, and the
attracted “hired liquidity” easily flows into other protocols following new rewards after
new rewards.

On the other hand, new AMM design options continued to appear with new invariants
and price curves, methods for calculating the result of the exchange and user rewards,
which was aimed at increasing the efficiency of using liquidity for various assets that
have some previously known qualities (for example, most of the time the price remains
around the peg value). A logical result of this process was the emergence of generalized
AMMs with the ability to form a price curve of arbitrary shape, such as UniswapV3
[Hayden Adams et al., [2021], Algebra [Algebra Protocol, 2021] and other solutions with
concentrated liquidity.

At the moment, the AMM design space continues to expand. Classic AMMs have
disadvantages: divergence loss (impermanent loss) caused by any price movement, losses
(lost profits) in favor of toxic flow, LVR [Jason Milionis et al., [2023|, the need for a deep
and serious assessment of the risks of their use. For these and other reasons, generating
income from passive liquidity provision can be challenging, and the development of new
mechanisms, approaches and tools in the DeFi space is aimed at solving such problems.

The creation and development of new effective variants of AMM is a key task of the
Algebra team. Many publications and discussions are devoted to research in the direction
of combating the negative features of AMM,; this is a very broad and difficult task, the
solution of which requires a lot of effort. However, for productive development in this
direction, a deep understanding of the principles and features of trading on the blockchain
is necessary, the identification of important parameters and conditions, detailed studying
their influence on the effectiveness of AMM. This article describes the approaches we
used to conduct an experimental study of the characteristics of the properties of AMM,
and also proposes a number of options for additional mechanisms to increase profitability,
along with the results of testing their effectiveness in the simulation system we use.

The purpose of this article is to explore various ideas and approaches to improve current
AMM algorithms by controlling the value of the fee. The simulation used for this study
compares classical AMM with a range of innovative proposals and different configurations
to form generalized but reasonable assessments of their areas of applicability. When com-
paring two approaches within the same blockchain, we largely abstract from the behavior
of the liquidity provider, assuming a comparison only of the relative liquidities in the
pools, and the similarity of the intervals of the allocated liquidity. This simplification is
possible due to the fact that in both cases, liquidity providers observe the same market
and price movement.

2 Description of the simulated AMM

In the current study, we use the most common variant of the classic AMM, used in the
second version of the Uniswap protocol [Hayden Adams et al., [2020]. The operating logic



of such an AMM is based on ensuring the fulfillment of an invariant of the following form:

X*Y =K (1)

Where X and Y are available reserves of pool tokens (token0 and tokenl, respectively).
K - constant.

This invariant is also called the constant product function, due to which the entire
class of corresponding AMMs is also called CPFMM (constant product function market
maker). This design of a decentralized exchange remains one of the most popular and
underlies, among other things, the Algebra protocol, and therefore best suits the goals
and objectives of the study.

If the invariant is preserved, the current instantaneous (marginal) price can be defined
as:

P=—
X
In light of the development of the concentrated liquidity approach, we move to another
presentation of the same principles underlying the CPFMM:
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Where L is liquidity constant, P is current marginal price in the liquidity pool.

Nowadays, the CL-AMM (AMM with concentrated liquidity) approach is widely used,
including Algebra AMM. Liquidity in such protocols is not evenly distributed; different
price ranges may use different liquidity values. To simplify the simulation, we ignore
changes in liquidity when the price crosses the boundaries of the ranges and consider
liquidity as a fixed parameter.

For each swap, from the amount of incoming tokens, a specified percentage is withheld as
a fee for the swap on this AMM. The collected fee is distributed among liquidity providers
and acts as a source of their income when using the protocol.

3 Description of the market model and simulation

We use simulation modeling of the token market. To do this, the following general as-
sumptions and assumptions are made:

e instantaneous dissemination of information and instant decision-making by agents
in the market. There are no delays in receiving and processing information about
market conditions;

e ecqual and complete access to information available to the corresponding class of
agents;

e absolute rationality of market participants. Each agent in any situation maximizes
the efficiency /profitability of its actions;
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The assumptions and hypotheses used are very strong: in reality they are either not
fulfilled or are only partially fulfilled. For this reason, some aspects of the simulation, es-
pecially those related to user behavior, may differ very significantly from what is observed
in reality. This fact will be discussed in more detail in the final sections of this article.

3.1 Description of the blockchain within the simulation

The market simulation is carried out under the given blockchain parameters. The blockchain
model is represented in the form of sequential blocks of transactions formed at fixed in-
tervals (block time). Each block corresponds to a specific point in time (timestamp).

The inclusion of each transaction in the block entails a fee - payment for the gas spent.
In the current simulation, the gas price does not change over time and is a fixed parameter.
The block has an unlimited size, and there is no competition for inclusion in the block.

The following blockchains were used as part of the simulation:

Blockchain Block time, seconds | Swap cost on default AMM, USD
Ethereum 12 12
Polygon 2 0.2
Intermediate option 6 0.2

3.2 Informed flow

The fundamental behavior of a trading pair is defined by an external price source - it
is assumed that there is an ideal market price at each moment in time. To bring the
simulation closer to reality, second-by-second values from Binance CEX for a certain
period of time are used as ideal prices. As the design of CPFMM suggests, it is unable to
independently determine the current price and fully relies on market participants. Within
the framework of our model, price discovery on simulated AMMs is carried out using a
separate class of market agents - arbitrageurs (informed flow), who have knowledge of
the current ideal price. These agents instantly execute trades on the AMM and on the
external CEX.

The simulated CEX has absolute elasticity (infinite liquidity) and allows an arbitrageur
to instantly execute transactions with a given fee. It is important to note that in practice
there are time delays, different sources of liquidity are used for arbitrage, and CEXs have
limited liquidity. However, at this stage we are neglecting such details of the real market.

Also, by default, there is no competition between arbitrageurs - within the model, this
is represented by the presence of a single arbitrageur with absolute efficiency. The lack of
competition ignores the impact of the auction in reality: the cost of gas or the reward for
including a transaction in the right place in the block. This simplification increases the
profitability of arbitrage in the model. In cases where competition among the informed
flow plays an important role, this will be noted separately.

As a result, at each moment in time, the arbitrageur makes a decision about whether it
is necessary to carry out arbitration, as well as about the required volume of arbitrage,
based on profitability. If the income exceeds the transaction costs, arbitrage occurs. The
arbitrage transaction is always simulated as the very first one in the block.



3.3 Uninformed flow

The second important component of our market model is the so-called uninformed flow,
which simulates the overall behavior of random trading participants (retail, end users,
other protocols, and so on). The behavior of this segment of agents differs from informed
flow - in each case, the agent needs to swap a certain amount of a particular token, and
the best (most effective) way to carry out such an exchange is selected.

The maximized metric of swap efficiency is the total cost of tokens received as a re-
sult of the exchange, minus the transaction fee paid (gas payment). In this case, each
“uninformed” agent participating in the trade chooses among two paths:

1. Perform an entire swap on one of the AMMs;

2. Exchange some of the tokens on one AMM, and some on another. In this case, the
agent pays gas for each of the swaps on the corresponding AMMs.

The choice of method for conducting a transaction follows the logic of aggregators: in
steps of 10%, the search for the most optimal division of the swap along possible routes
is carried out.

The decision to perform a swap by an uninformed agent is made in accordance with the
observed distribution of time between swaps on the corresponding real reference liquidity
pool (fig. . The most liquid CPFMM pool on the reference blockchain is taken as a
reference.

Timedelta between swaps, seconds, MATIC/USDC, Polygon
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Figure 1: Timedelta distribution between swaps in MATIC/USDC pool on Polygon

The observed shape of the time distribution between swaps is similar to the shape of
the Poisson distribution:
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Figure 2: Examples of Poisson distributions

For this reason, the simulation uses the assumption that the corresponding distribution
of the flow of applications has the form of a Poisson distribution (fig. [2) with fixed
parameters within each hour of the day, and the density of their flow is taken from an
analysis of the statistics of exchanges in the corresponding pair on UniswapV3.

After deciding to conduct a swap, the trader determines the type of transaction (buy/sell)
and the number of tokens. In each case, the decision is made on the basis of a random
distribution in the form of a Laplace distribution with given parameters:

fa) = Semoi==?

The current study assumes that the Laplace distribution satisfactorily reflects the prop-
erties of uninformed flow (fig. |3)).
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Figure 3: Distribution of price deltas after swap

It is known that market properties can change over time and also depend on a number



of external parameters. One of these parameters is seasonality - trading activity depends
on the moment in time. In order to increase the realism of the current study, we take
into account the influence of time of day on the activity of uninformed flow. As a result,
every hour according to UTC, the swap volume distribution parameters change (fig. |4)).
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Figure 4: Per-hour metric for ETH-USDC pair in Polygon

We assume that the uninformed flow model used allows us to draw conclusions about
some properties of the “ideal real market”. Obviously, in reality the number of parameters
and dependencies is much larger. However, at this stage we approximate the behavior
of agents using the principles described above. The following effects and features are
ignored, among others:

e the FOMO (agiotage) with sharp price movements
e other seasonal effects (holidays, weekends)

e the presence of other external events that change distributions and parameters

3.4 Summary description of the simulation

The components of the model described above together form the final simulation stand,
each step of which consists of the following actions:

1. Determining the current point in time on the blockchain (timestamp)

2. Conducting, if necessary, arbitrage of all present AMMs with an external CEX at
the current abstract ideal market price

3. Simulation of uninformed flow
Each individual experiment is described by the following parameters:

1. Blockchain used



2. Simulated token pair
3. Set of competing AMMs used

Moreover, each AMM may have different liquidity, swap cost (amount of gas), commis-
sion, and additional features.

4 Research of the influence of changing model pa-
rameters

4.1 Description of the study

In this section, on the described simulation stand, a variational study of the influence of
the parameters of classical CPF-AMM is carried out. Each specific experiment involves
conducting a number of simulations with different values of the parameter under study.

The comparison is made between the reference standard CPF-AMM and the modified
version under study. As a result, the final statistics are compared, including the ratio of
the collected fee to the liquidity value.

4.2 Variation of AMM fee value

In this experiment, each specific simulation is performed at a given swap fee in pooll.
The commission for swap in pool0 is fixed and equal to 0.05%.

After simulating a highly liquid trading pair ETH/USDC on the Ethereum blockchain,
the following result was obtained (fig. |9)):

Profitability of pooll against pool0 (fee 0.05%),ETH/USDC on Ethereum
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Figure 5: The result of fee variation for ETH-USDC on Ethereum

Separately, fig. [6] shows low fee values close to pool0 (0.05%).

Based on the data obtained, it follows that if there are only arbitrage transactions, the
most profitable strategy is to use a high commission value. At the same time, the global
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Figure 6: The result of fee variation for ETH-USDC on Ethereum, small values

maximum profitability is unique and is achieved with a fee in the region of 4-8%. Up to
a certain point, increasing the commission increases the profitability of the pool, but if
the values are too high, the profitability decreases rapidly: if the volatility of the trading
pair is not enough, then too high a commission leads to the fact that the pool ceases to
be used.

In the presence of rational uninformed flow, the situation changes significantly: from
the resulting graphs it is clear that in the presence of random trading, firstly, the strategy
of using extremely high commissions becomes not so profitable, and secondly, a local
extremum of profitability arises when the commission decreases below the competitor.
This local extreme occurs due to the fact that with lower fees in highly liquid pools, a
significant share of random volume goes to the pool with a lower fee.

Profitability of pooll against pool0 (fee 0.05%), MATIC/USDC on Polygon
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Figure 7: The result of fee variation for MATIC-USDC on Polygon, small values
After simulating a highly liquid trading pair MATIC/USDC on the Polygon blockchain,
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the following result was obtained (fig. [7)).

Based on the results obtained, we can conclude that fee values are extremely important
in competition between AMMs. With sufficient activity of rational uninformed flow,
a small reduction in commission should lead to the “interception” of most uninformed
trades, which will lead to increased profitability for providers on this AMM. On the other
hand, setting “protectively high” commissions allows DEX to receive significant income
if the traded pair has a sufficiently high price volatility.

It should be noted that with an appropriate AMM design, the fee value in the liquidity
pool is easily changeable. However, in practice, making an accurate decision on the
value of the commission requires a detailed analysis of other parameters of the system
and the market, successively approaching the optimal value after assessing the observed
changes. The Algebra protocol provides the ability to quickly and safely change the pool
commission without liquidity migration.

4.3 Variation of AMM liquidity value

In this experiment, it is assumed that the simulated system has a fixed total liquidity.
This approach is due to the fact that changes in total liquidity can lead to changes in the
influence of random trading on the evolution of the model, which can lead to incorrect
conclusions.

The simulated system consists of two AMMs: pool0 and pooll. The liquidity of pooll
is specified using the following system of formulas:

LpoolO + Lpooll = Lsum7 Lsum = const

Lpooll = LpoolO * k, k = const

Each individual simulation uses a fixed value of the parameter k, which describes the
proportion of liquidity in pooll to liquidity in pool0.

Profitability of pooll against pool0 (fee 0.05%), ETH/USDC on Ethereum, arbitrage only
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Figure 8: The result of liquidity variation for ETH-USDC pool in Ethereum, arbitrage only
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In the case of using a blockchain close to Ethereum, the ETH/USDC trading pair, in the
complete absence of uninformed flow (only arbitrage is simulated), the following result is

obtained (fig. [3)).

The profitability of liquidity provision grows with the size of the liquidity: each new
liquidity provider increases the profitability for all protocol providers.

If there are rational random trades, we receive the following data (fig. E[):

Profitability of pooll against pool0 (fee 0.05%),ETH/USDC on Ethereum
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Figure 9: The result of liquidity variation for ETH-USDC pool in Ethereum

The obtained result allows us to conclude that under the described conditions, an in-
crease in liquidity also leads to an increase in the efficiency of the entire liquidity of the
pool. Thus, a more liquid pool will be more attractive, all other things being equal. How-
ever, all other things being equal, small differences in liquidity in highly liquid pools are
not such a significant factor in the presence of random trading.

Profitability of pooll (fee 0.04%) against pool0 (fee 0.05%), ETH/USDC on Ethereum, arbitrage only
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Figure 10: The result of liquidity variation for 0.04% fee ETH-USDC pool in Ethereum,
arbitrage only

The behavior of the system looks different if the fee value in pooll begins to differ from
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pool0. Fig. shows result if there is exclusively arbitrage.

A decrease of fee value leads to a decrease in the pool’s profit from arbitrage, which is
further aggravated by a decrease in liquidity: arbitrageurs prefer to conduct arbitrage less
often.

The situation is different when there is not only arbitrage, but also a rational uninformed
flow (fig. [L1).

Profitability of pooll (fee 0.04%) against pool0 (fee 0.05%), ETH/USDC on Ethereum
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Figure 11: The result of liquidity variation for 0.04% fee ETH-USDC pool in Ethereum

This result may seem counterintuitive at first glance: decreased liquidity leads to in-
creased profitability for providers. Nevertheless, the explanation for the observed effect
is quite simple. Taking into account the results of the previous subsection (fee varia-
tion), it was determined that under the given modeling conditions, a commission of about
0.04% leads to “interception” of almost the entire random volume. Since the entire sim-
ulated market system is highly liquid, this fee change plays a much larger role than a
small difference in price impact due to liquidity. For this reason, even with low liquidity,
pooll receives a significant portion of random trading, the profit from which is distributed
among the less liquid providers, ultimately increasing the profit for each of them.

Thus, under certain market conditions (in fact, for this to happen, the market system
must have excess liquidity and a significant volume of random trading), a smaller liquid-
ity pool, due to lower fees, can significantly outperform a more liquid pool in terms of
profitability. Next it is logical to check the result if the required conditions are not met.

For this purpose, a simulation was carried out, in which the total liquidity of the system
was reduced by 50 times (fig. [12)).

After a strong decrease in the total liquidity of the system, price impact during a swap
becomes a very significant factor in the distribution of random trading volumes. At the
same time, reducing the fee when the pool’s liquidity is low is no longer a recipe for
success: a more liquid pool still remains more profitable.

The conducted study of the influence of liquidity volume confirms the significant impor-
tance of this parameter. In the absence of market oversaturation, increased liquidity leads
to increased profitability of the protocol. On the other hand, there may be cases in which
a further increase in liquidity does not make sense. Thus, when planning a protocol user
acquisition strategy to maximize efficiency, it is necessary to take into account current
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Profitability of pooll (fee 0.04%) against pool0 (fee 0.05%), low liquidity, ETH/USDC on Ethereum
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Figure 12: The result of liquidity variation for 0.04% fee ETH-USDC pool in Ethereum with
low liquidity

market conditions and competitors on a given blockchain. Namely, depending on the
current distribution of liquidity between protocols, adjust the commission to maximize
income.

4.4 Variation of the swap cost (gas)

In this experiment, each specific simulation is performed at a given swap cost (gas per
swap) in pooll relative to pool0. The ratio is specified using the Gy coefficient.

When simulating a highly liquid trading pair ETH/USDC on the Ethereum blockchain,
the following result was obtained (fig. [13)):

Profitability of pooll against pool0 (fee 0.05%),ETH/USDC on Ethereum
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Figure 13: The result of gas consumption variation for ETH-USDC pair in Ethereum



profitability, pooll vs pool0

Profitability of pooll against pool0 (fee 0.05%), ETH/USDC on Ethereum, cheap gas
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Figure 14: The result of gas consumption variation for ETH-USDC pair with cheap gas

The obtained result indicates that with expensive gas, the cost of swapping for AMM
becomes an extremely important factor for a perfectly informed and absolutely rational
uninformed flow. This is consistent with the trading statistics observed on real pools: for
a significant share of swaps in highly liquid pairs, even a small change in gas consumption
would significantly exceed the losses from price impact.

In the case of less expensive blockchains, it seems logical to assume that the cost of gas
swaps will have a less dramatic impact. Indeed, with a swap cost of $0.20, the following
simulation result was obtained (fig. [L4).

Although its impact is weaker with significantly cheaper gas, it nevertheless remains a
significant factor influencing protocol profitability in conditions of high liquidity.

In the case of lower total liquidity (total liquidity is reduced by 50 times), the following
result is observed (fig. [15):

profitability, pooll vs pool0

Profitability of pooll against pool0 (fee 0.05%), low liquidity, ETH/USDC on Ethereum

700.00% .
arbitrage_only
= Arbitrage and uninformed flow

600.00% — Arbitrage only

500.00%
400.00%
300.00%
200.00%
100.00%

0.00%

—100.00%

50.00% 100.00% 150.00% 200.00% 250.00% 300.00% 350.00% 400.00% 450.00% 500.00%
gas scale, pooll vs pool0

Figure 15: The result of gas consumption variation for ETH-USDC pair with low liquidity
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With significantly lower liquidity, the same rational random trading volume generates
greater profits for each active liquidity provider. For this reason, the significant difference
in gas, while remaining an important factor, has a more dramatic impact on the prof-
itability of AMM. On the other hand, the average income of arbitrageurs decreases when
liquidity is low, which increases the importance of gas for them and forces them to use
the more expensive AMM less often.

The experiment confirms the assumption that the gas efficiency of AMM is a critically
important characteristic. AMM, which is more expensive to use, generates reduced returns
for liquidity providers compared to competitors.

4.5 Results of a variational study of the AMM model

The experiments conducted using the simulation model are consistent with expectations
and demonstrate direct dependence of the AMM profitability on the parameters under
consideration. Profitability increases, on the one hand, if AMM is able to provide more
favorable conditions for carrying out swaps for retail users, and on the other hand, if
AMM charges a large commission on the informed trading flow (arbitrage).

At the same time, increasing the attractiveness for rational uninformed volume is achieved
due to, firstly, the fastest and most accurate provision of the optimal price, and secondly,
the reduction of various kinds of “side costs”. Such costs may include:

e losses due to price impact (slippage)
e gas cost per swap

e swap fee in AMM

Accordingly, by increasing liquidity, optimizing smart contracts and reducing fees, it is
possible to achieve competitive advantages, providing on average more favorable condi-
tions to end users.

In the case of externally sourced arbitrage, on the other hand, it is necessary to take
into account the ratio of the expected uninformed trading volume to the informed one:
increasing the fee value may increase the income of the liquidity pool from arbitrage in the
presence of sufficient volatility, but at the same time radically reduce the attractiveness
for uninformed order flow.

Thus, the need to take into account external factors, such as the characteristics of the
assets traded and the properties of the main competing pools, together with internal
factors, including the strengths and weaknesses of AMM, gives rise to the possibility of
using various strategies to improve liquidity efficiency.

5 Research of approaches to fee value management

5.1 Description of the research

In the previous section, a study was conducted of the dependence of liquidity yield in
AMM on some external and internal factors. The findings suggest a number of strategies
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that could be used to improve the effectiveness of the protocol. In addition to “simple”
options, such as setting a fixed commission, attracting liquidity and optimizing smart
contracts, there are also more complex strategies that require modification or addition of
AMM functionality.

In this section, using a simulation model, we study the features of approaches based on
automatic / manual control of the value of the swap fee. In addition, an important area
of interest is the dependence of their effectiveness on market conditions.

The results of the previous experiments highlight the importance of both uninformed and
informed order flow, but formulate different conditions that maximize returns from each
of these sources of trading volume. For this reason, the idea arises of somehow “dividing”
these flows and using informed volume discrimination to increase the protocol’s income,
while maintaining its attractiveness for uninformed trading. Next, we discuss various
algorithms for dynamic fees aimed at implementing the idea of separation. The final
results and conclusions about their effectiveness are described at the end of this section.

5.1.1 Dynamic fee based on historical volatility

The influence of external market conditions on the effectiveness of AMM leads to the
idea of reacting to them during the operation of the protocol. Depending on the types of
tokens, new AMM design options were created, changing the internal invariant to provide
a price curve of the required shape. On the other hand, for a standard generalized AMM,
it seems reasonable to control the value of the commission based on certain characteristics
of the tokens. One such characteristic is observed historical price volatility.

Based on average volatility, tokens can be divided into three classes: low volatility,
medium volatility, and high volatility. Within the framework of the proposed mechanism,
AMM can use specific approach for each class of tokens. Thus, low-volatility tokens carry
fewer risks for liquidity providers on the one hand, and generate less informed volume on
the other hand. Highly volatile pairs carry increased risk of loss for LPs, but generate
more informed trading volume. Based on the mentioned features, we can suggest using a
reduced fee for low volatility and a high fee for high price volatility.

It is on this approach that the dynamic commission algorithm used in the Algebra pro-
tocol of the first version is based [Algebra Protocol, 2021]. The variance of the logarithm
of the pool price over the last 24 hours is used as the volatility value, with a sampling
frequency corresponding to one observation every second:

1 tnow

> (tick(t) — tickaverage(t))?

t=tnow—window

volatility(t,oy) = ————
u ) window

window = 24 * 60 * 60
tick(p) = logr ooo1 (price(t))

The resulting volatility value is used to determine which class (low, medium, high volatil-
ity) the corresponding pair of tokens belongs to. To do this, the final fee value at time t
is calculated using a function of the following form:

fee(t) = feepase + sigmoidg(volatility(t)) + sigmoids (volatility(t))
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Example of dynamic fee sigmoids
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Figure 16: The example of sigmoidal fee function
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The resulting form of the volatility-based fee function is illustrated in the fig. [I6]

By selecting the appropriate sigmoid parameters, the fee function can be configured in
such a way that the resulting “levels” of its values correspond to the definition of low,
medium and high volatility for the current token pair. As a result, the fee value will
increase if trading, and with it the price movement, has been active over the last 24
hours. And go down if the price movement activity becomes less than usual.

5.2 Shifting the fee spread in the direction of price movement

Another option to take into account market conditions is to use a fee with a moving
spread: the total price spread for the purchase/sale of tokens remains fixed, but shifts in
one direction or another. As a result, the fee for selling begins to differ from the fee for
buying.

current price

price to sell in pool price to buy
| I |
\ I | ,
) price
price / (1 - fee) price * (1 - fee)
current price
price to sell in pool price to buy
| | |
\ I | -
price
price / (1 - fee_sell) price * (1 - fee_buy)
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From the point of view of an “usual” AMM user at the time of swap, such a liquidity
pool is practically no different from a regular one: the “shift” of the commission spread
with a constant internal price does not differ from the price shift with a constant spread
(within certain limits). However, this approach allows AMM to create different conditions
for buying and selling without changing the internal state of the liquidity pool (which
simplifies its design).

A. Nezlobin on Twitter proposed |Alexander Nezlobin, 2023] an option for implementing
this approach, based on price changes as a result of swaps. At the beginning of each
block, if swaps occurred in the previous block, the commission “shifts” towards the price
movement in proportion to the price impact.

Let § be price impact after swap and k - const.

If the price moves down (token0 is exchanged for tokenl):

feeoi(t) = min(feep1(t — 1) + 9 x k, mazxFee)
feeio(t) = max(feen(t — 1) — 0 * k,0)

If the price moves upward (tokenl is exchanged for token0):

feeoi(t) = max(feep(t —1) —d % k,0)
feeio(t) = min(feey(t — 1) + 9 x k, maz Fee)

The resulting dynamic fee management algorithm allows the liquidity pool to actively
respond to price movements and more strongly discriminate against the correlated swap
flow, which often corresponds to the informed toxic flow. As a result, if the trading volume
is asymmetrical, the commission also becomes asymmetrical: the swap becomes more
expensive in the direction of the price movement and cheaper in the opposite direction.

It should be noted that the algorithm also reacts to price movements with a delay: the
commission will increase only for the next swap. For this reason, for cheaper execution
of large swaps, as well as other ways to generate income, there may be strategies to
manipulate this algorithm.

As part of the current modeling and simulation, the described version of the algorithm
with & = 0.75 is used.

5.3 Elastic fee

As discussed previously, informed trading volume, generated by arbitrage for example,
aims to profit from the pool’s price lag. To do this, the arbitrageur buys one of the tokens
in the pool at the current pool price and sells it elsewhere at the pre-known fair price of
the token.

Let’s look at the arbitrage process in a zero-fee pool. Let us introduce the following
notation:

Pe - current instant price in the liquidity pool
P, - current fair market price

Ax, Ay - changes in token balances in the liquidity pool after the swap
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Then, assuming that arbitrage is carried out in the most efficient way, the swap in the
pool will be carried out in such a way that the price in the liquidity pool after arbitrage
will be equal to p,. Changes in token balances are related to the following equations:

Ay = (VDo = /pe) ¥ L

1 1
Az = ( —
VPo  +/Pc
Thus, from the point of view of the liquidity provider, the swap was carried out at a
final execution price equal to:

Ay (VPo—+/DPe)* L
\A—x!—\ ;i 1)*L\—\/popc

(VPo  /pc

)% L

This means that the real exchange execution price is equal to the geometric mean of the
initial and final prices in the liquidity pool. On the other hand, the arbitrageur makes one
trade at the price /pop. and another at the price p,. From the resulting price difference,
a profit arises, which is missed by the liquidity provider and given to the arbitrageur.

In the situation described above, it would be more profitable for the liquidity provider
to “sell” at the price p,, instead of /p,p.. This result can be achieved by using an
appropriate commission value. Let ¢ be the value of the swap commission in the liquidity
pool. Then (we will further consider the case of rising prices):

Ay (1+¢)
AZE _pO

= \/popc*(1+¢):po =>
_ VP _

Ay (1+ ¢)
Az

(1+9¢)

>

g

The resulting commission value leads to the fact that the hypothetical arbitrage from
the price p. to the price p, gives all the profit to the liquidity provider, and the arbitrageur
does not receive any income at all.

We call the above approach to commission management elastic fee, since the value of
the commission arises in response to a corresponding price shift. It should be noted that
elastic fee in its current definition coincides with the concept of slip-based fee, which was
proposed by the THORChain protocol [THORChain protocol, 2019]:

22Y
f E€slip = m
X, Y -reserves of token0 and token1 tokens of the liquidity pool. By simply transforming
the elastic fee described above into a representation form using virtual pool reserves, it
is easy to show that it is equivalent to a slip-based fee. This approach was used by the
THORChain protocol in order to increase the profitability of the pool when there are
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large volume swaps. However, this option for implementing an elastic fee has a significant
drawback: by splitting one large swap into several smaller ones, arbitrageur can achieve
significant savings on the fee paid. Due to this, the effectiveness of such a mechanism can
be reduced to zero.

In order to prevent the possibility of “bypassing” the elastic fee mechanism, we modify
the fee function in such a way as to ensure its additivity under certain conditions: the
commission paid for two swaps must be equal to the commission for one swap equal to
the sum of these swaps. To do this, we can somehow fix the starting price pgq,+ (let’s call
it the reference price) and calculate the commission for each part of the swap (or each
individual swap) as follows:

F(po, p1, L) - total fee amount in tokens for the “price shift” from py to p; with liquidity
L.

So:

F(pNypNJrl; L) = F(pstartypNJrly L) - F(pstartapN; L)

Taking into account the reasoning about the construction of the elastic fee, the function
F' can be defined as follows:

F(p())pl)L):( _1)*Ay

ElE

Given the formula (/p1 — /Po) * L = Ay, we get:

(v/P1 — /Do) * L

VB
VDo

VDo

F(po,p1, L) = ( ) * (v/P1 — /Po) * L =

Further:

PN+1 — PN
F(Pstart, PNs pN41, L) = L * BN L*2%(y/pPn+1 — /PN) (2)

The resulting form of the function F' (2) is the final definition of the elastic fee. Another
design issue with this approach is the choice of py.+ . We believe that choosing a price at
the beginning of a block is justified: due to this, the efficiency of splitting arbitrage within
a single transaction (or block) is lost, while the effect for casual users of the protocol is
minimized.

Obviously, taking all profits from arbitrage has a number of negative consequences for
AMM and encourages the use of strategies to circumvent this mechanism. The following
subsection describes such a strategy and suggests design additions that minimize negative
effects.

5.4 Elastic fee with simplified arbitrage mechanism

Given the competitive nature of arbitrage, under normal conditions the arbitrageur is
interested in maximizing his profit from each transaction. As a result, not only does the
income increase, but also the size of the fee that the arbitrageur is willing to pay to the
miner (or block producer) for including his transaction before competitors increases.
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Thus, an arbitrageur should strive to obtain maximum transaction execution income
with his operations. Profit maximization is achieved at the moment when the marginal
price of the arbitrated AMM, taking into account the commission, becomes equal to the
external price (further price movement leads to negative profit). For a pool with an elastic
commission, obtaining the appropriate price value can be done using the formulas below.

Let’s consider the case when the price of AMM needs to be moved “up”. In this case,
the arbitrageur purchases token0 (z) using the following formulas:

Ay (1 fee) = (v/ps — VBo) * L
1 1

VPo  V/Pe
_ (P
fee =(T0=1)

Az = (

) x L

Respectively:

By = L (b Vi)

From here we further obtain the equation for the price of AMM after the swap:

Y * /Do
01 = /pg + ——X—
b Po L*\/]7_O+y

Then the value of the commission for this swap comes down to:

Yy Y
fee_(\/lTo 1) v vhty

And the total amount of the fee paid:

2

Lx*\/po+y

The marginal fee value (instant fee for an infinitesimal swap) after the swap is thus
obtained from the total fee in the following form:

feesum =y x fee =

afeesum_ 2*L*\/_—i_y
ay Lyt )

By substituting instead of y the corresponding formula from py and p;, we can reduce
liquidity and obtain an expression of the form:

feemarginal =

(a + \/Po)*po Do

feemarginal = =

(a+ /po)? (a+ VP0)?
0= (Vv gl
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Taking into account that the marginal price must be equal to the external price, we
obtain the following equation:

popt
1_f€emarginal (pO ) pout)

Pout =
From here we ultimately get the value of p,pt:

4 * Do * Pout

Popt =
P (/D0 + /Dout)?

The resulting AMM price maximizes the income from arbitrage of the pool with an
elastic fee against the external price p,,;. Given the nature of the designed elastic fee,
the most profitable arbitrage strategy is to shift the AMM price in each block to the
corresponding popt , gradually approaching p,.;. With free transactions, this approach
allows arbitrageur to get, at a limit, a certain share of the potential maximum arbitrage
profit achievable in a pool without an elastic fee.

(3)

Best possible scenario for arbitrageur (without any fee) looks like:

1 1
\/p_O vV Pout

Then the ratio of the marginal profitability from pool arbitrage with an elastic fee to
the maximum theoretical profitability has the following form, depending on the deviation
of the AMM price from the ideal market price (fig. :

Pmaz = L ( ) * Pout — L (\/ pout_\/p_O)

Asymptotic maximum arbitrage profit, compared to absolute maximum
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Figure 17: The maximal asymptotic arbitrage profit for different price deltas

From the results obtained, we can conclude that with small price deviations, an ideally
rational arbitrageur is able to obtain an income close to 66.66% of the maximum (2/3).
Stronger deviations allow him to get more, but also require more blocks.

The described strategy of dividing arbitrage into blocks allows the arbitrageur to min-
imize losses from the presence of an elastic fee. In the extreme case, if the market price
does not change and there is no competition at all, the arbitrageur can almost completely
neutralize the effect of the elastic commission, bringing the price closer in extremely small
steps. In practice, due to the presence of competition and market price movements, the
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most profitable strategy is to arbitrage as quickly as possible, otherwise there is a risk of
losing profits.

The resulting design of the elastic fee leads to lagging price movement. AMM lags
behind the current market price. This fact may reduce the attractiveness of AMM for
random uninformed trading volume, interested, on average, in the closest to the market
price.

To minimize the negative effect of price lag, we propose to supplement it with a simplified
arbitrage mechanism - shortcut arbitrage. When using this mechanism, the elastic fee
is disabled, but the arbitrageur is obliged to transfer a fixed percentage of the income
resulting from the arbitrage to the pool. As a result of using this approach, the value of
the internal price in the liquidity pool reaches the market value as quickly as possible,
and liquidity providers receive additional income from the informed trading flow.

From the point of view of an arbitrageur, the mechanism described above allows one to
get more profit per block and reduce the risk of losing this income in competition with
other arbitrageurs. The value of the coefficient of the portion of income that must be
transferred to the liquidity pool after arbitration must be set in such a way as to ensure
the economic feasibility of using shortcut arbitrage. As part of the current simulation
experiments, a coefficient of 33% is used: the arbitrageur is exempt from the elastic
fee, but is required to transfer 33% of the arbitrage income to the pool, otherwise the
transaction will be reverted.

Thus, the concept of an elastic fee proposed in the previous section becomes an impor-
tant part of a more complex mechanism that allows stimulating the desired behavior of
arbitrageurs - the elastic fee acts as a brake that prevents arbitrage from being carried
out directly, without the use of special methods and strategies.

5.5 Results of a study of mechanisms for increasing the prof-
itability of liquidity providers

Using a simulation stand, the profitability results of the previously described commission
management mechanisms were obtained:

o different fixed fee values

e volatility-based adaptive fee

e clastic fee

e clastic fee with shortcut arbitrage
e moving fee spread

Each simulation corresponds to a base fee value: this is the starting fee value (in the
case of volatility-based fee, this is the minimum fee value).

5.5.1 Ethereum arbitrage only

First experiment: simulation of a highly liquid USDC/ETH trading pair on the Ethereum
blockchain without any uninformed flow (arbitrage only). The following result was ob-

tained (fig. [18):
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Result vs classic 0.05% pool, USDC/ETH on Ethereum, arbitrage only
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Figure 18: The result of simulation in Ethereum, only arbitrage

In this experiment, the best result is shown by volatility-based dynamic fee. This is
because with the default sigmoid settings, this dynamic fee tends to set a higher fee
compared to other mechanisms: most of the time the liquidity pool fee was around 0.3%.
Thus, this observation is consistent with the fee variation results in the previous section:
increasing the fee within certain limits increases the income of liquidity providers from
arbitrage.

Elastic fee with shortcut arbitrage and moving fee spread also show good results. The
elastic fee with shortcut profitability is based on the assumption that arbitrageurs are
forced to give 33% of their income to the liquidity pool, which in practice may not always
be the optimal strategy for them. A moving commission spread, on the other hand, causes
the commission to shift in the direction of the price movement, which on average actually
increases the pool’s arbitrage income.

At the same time, the elastic fee in its pure form differs little from the fixed commission
value: sharp and large price jumps in a given pool are not such a frequent event as to
lead to a significant difference from the fixed commission.

When using a rough estimate of additional gas costs, the effectiveness of complex fee
management methods slightly decreases.

5.5.2 Ethereum with uninformed flow

Completely different results are observed in the presence of not only arbitrage, but also
rational uninformed flow. This experiment simulated a flow of uninformed trades with an

average expected volume of $4,500 (fig. [19).

Rational uninformed flow prefers not to use pools with large fees, so volatility-based
dynamic fee with standard settings demonstrates a much less outstanding result. The best
profitability is observed with elastic fee with shortcut arbitrage. This option in the best
configuration involves combining the benefits of discriminating against informed traders
(arbitrage) with attracting uninformed ones (due to a commission of about 0.037%).

At the same time, the slightly reduced fixed fee value outperforms almost all other
options in terms of profitability. It is logical to assume that the effectiveness of this
approach should increase even more if we take into account the resulting excess gas costs.
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Result vs classic 0.05% pool, USDC/ETH on Ethereum
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Figure 19: The result of simulation in Ethereum

This is exactly the result that is observed (fig. :

Result vs classic 0.05% pool, USDC/ETH on Ethereum, with uninformed flow, different gas
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Figure 20: The result of simulation in Ethereum, with gas overhead estimations

On such an expensive network as Ethereum, increased gas consumption by the liquidity
pool sharply reduces its profitability in a system with rational uninformed flow. As
a result, simpler options such as changing the fixed fee or using a simple moving fee
spread implementation may be much preferable to more complex automated approaches
to managing fees.

Another important factor when comparing AMMs is their liquidity. If the liquidity
of the simulated pool is 10 times less than the liquidity of the competitor, then the
following results are observed, with the same (fig. and different gas estimates (fig.

, respectively:

To attract rational uninformed flow, a low-liquidity pool needs to reduce fees, compen-
sating for the increased price impact. Moreover, with gas so expensive, setting a fixed low
fee should be the most effective of the proposed strategies.
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Result vs classic 0.05% pool, USDC/ETH on Ethereum, 1:10 liquidity

15% — fixed fee

— volatility-based dynamic fee
10% —— elastic fee
elastic fee with shortcut arbitrage
5% — moving fee spread
0%
—5%

-10%

-15%

relative profitability

-20%

-25%

—30%

0.030% 0.035% 0.040% 0.045% 0.050%
fee base value

Figure 21: The result of simulation in Ethereum, with 1:10 liquidity value

Result vs classic 0.05% pool, USDC/ETH on Ethereum, different gas, 1:10 liquidity
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Figure 22: The result of simulation in Ethereum, with 1:10 liquidity value and gas overhead
estimation

5.5.3 Polygon

The dynamics of the profitability of the pool depend, among other things, on the charac-
teristics of the blockchain, such as the cost of gas and block time. Therefore, experiments
were also carried out using the cheaper and faster Polygon blockchain as an example.

As a result of simulating the highly liquid USDC/ETH pair on the Polygon blockchain
without uninformed flow, the following result was obtained (fig. .

Just like in the Ethereum simulation, providers’ income from arbitrage increases with
the fee value increase. At the same time, on average, the same fee management methods
do not demonstrate such a strong gap from the fixed fee: shorter block time and cheaper
gas lead to more frequent, but smaller arbitrage with a smaller price deviation.

As expected, changing gas prices has little effect on returns in a purely arbitrage simu-
lation.

The uninformed flow simulation experiment simulated a trade flow with an expected
average value of $270, which is consistent with the observed trading distribution in the
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Result vs classic 0.05% pool, USDC/ETH on Polygon, arbitrage only
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Figure 23: The result of simulation in Polygon, only arbitrage
Result vs classic 0.05% pool, USDC/ETH on Polygon
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Figure 24: The result of simulation in Polygon

corresponding UniswapV3 pool on Polygon. The result differs from that obtained for
Ethereum (fig. 24)).

Despite the fact that volatility-based dynamic fee leads to a higher fee on average, it
significantly increases the profitability of the pool. The low average value of an uninformed
flow transaction leads to a significant impact of arbitrage income on the total profit of
the liquidity provider. For the same reason, setting a reduced fixed commission provides
a smaller increase in efficiency compared to the experiment on Ethereum.

Despite the much lower cost of gas, taking into account rough estimates of additional
costs also affects the result (fig. 25)):

In some cases, cheaper gas methods are also more profitable. In particular, the moving
fee spread demonstrates a good result. However, more aggressive commission management
using volatility-based dynamic fees shows the best results.

An experiment was also conducted with a significant difference in liquidity; the simulated
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Result vs classic 0.05% pool, USDC/ETH on Polygon, different gas
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Figure 25: The result of simulation in Polygon, with gas overhead estimation
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Figure 26: The result of simulation in Polygon, with gas overhead estimation and 1:10 liquidity

value

pool has 10 times less liquidity than its competitor (fig. . The observed situation
differs from the previous ones: with lower liquidity, the best results are shown by cheap
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approaches that preserve the attractiveness of the pool for uninformed flow.

5.5.4 Conclusions

As a result of the simulations, the following conclusions can be formulated regarding the

mechanisms for managing the pool fee value:

e there is no clearly best approach for all cases

e good results, especially within expensive blockchain, are demonstrated by very sim-

ple and cheap methods, such as fixed commission and moving fee spread

e in highly liquid active pairs, elastic fee with shortcut arbitrage allows providers to

get a big increase in profitability



e with the significant dominance of arbitrage, an increased value of the fixed fee may
be the most profitable option

6 Discussion and applicability of the results in prac-
tice

The model used in the simulations is based on a number of assumptions. These assump-
tions include the absolute rationality of all trading participants. This assumption, in
particular, is used to model the behavior of uninformed flow: for each swap, all available
pools are compared and the best possible way to carry out the transaction is selected.
In practice, such an approach is partially implemented with the help of aggregators that
help users conduct transactions in the most efficient way.

However, statistics show that often the big bulk of uninformed flow enters liquidity
pools not through the aggregator, but through the protocol Ul. We compared the total
volume of all swaps in the UniswapV3 pool on Arbitrum, at the beginning of which one
or another contract (tx_to) was called. After assessing the nature of the transactions and
the contracts used, the following result was obtained (fig. 27):

UniswapV3 USDC.e-ETH trade volume by source, Arbitrum

Arbitrage
From UI
Unclassified
Protocols
Aggregation

Figure 27: Estimation of volume distribution by source, USDC.e-ETH 0.05% UniswapV3, on
Arbitrum

It should be noted that “Arbitrage” also includes behavior similar to MEV. The “Unclas-
sified” category includes hundreds of different smart contracts with a small total volume.
The “From UI” category includes calls directly to well-known Uniswap routers.
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A similar picture is observed in the ARB-ETH pool (fig. [28):

UniswapV3 ARB-ETH trade volume by source, Arbitrum

Arbitrage
From UI
Unclassified
Agaregation

Figure 28: Estimation of volume distribution by source, ARB-ETH 0.05% UniswapV3, on
Arbitrum

From the results obtained, it follows that the nature of the behavior of uninformed flow
in practice differs significantly from the model we use: it is not rational and is not inclined
to use aggregators to determine the most profitable way to conduct a transaction. On the
contrary, a large number of retail users simply directly use one or another protocol that
they are accustomed to or have the most confidence in.

Since a significant proportion of real uninformed flow consists of conditionally “loyal”
volume, simulation results relying on uninformed flow are difficult to apply in practice:
for example, a small reduction in commission is unlikely to lead to such a dramatic
redistribution of uninformed flow as was obtained during the simulations. Accordingly,
methods and approaches based on “interception” of rational uninformed flow may not be
so effective.

On the other hand, the arbitrage model used is similar to the observed statistics. For
this reason, methods based on informed flow discrimination can be expected to produce
results similar to simulation. At the same time, one of the most profitable strategies
may be to increase the commission to values that will not lead to an outflow of “loyal”
volume. This assumption is confirmed, among other things, by Uniswap’s successful
implementation of an additional commission for using their UI: this commission exceeds
(sometimes significantly) the commission in liquidity pools, but does not lead to a decrease
in the trading activity of the protocol.
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Other important factors for increasing the profitability of AMM remain the most efficient
optimization of gas consumption by smart contracts and the attraction of greater liquidity.
Reduced gas and price impact costs directly increase the income of liquidity providers.

7 Conclusions

In the course of this research, a comparison was made of the impact on AMM profitability
of changes in market conditions, together with the use of various approaches to managing
the value of the pool commission. The results obtained demonstrate that the following
factors have a significant impact on the profitability of liquidity providers:

1. Total liquidity in the pool. Increasing overall liquidity increases profitability for all
pool liquidity providers. This increase is observed until there is a “oversaturation”
of the market with liquidity - an excess of demand from users and external arbitrage.

2. Gas swap cost. This factor is especially important on such expensive networks as
Ethereum. Often, gas costs can exceed the impact price or even the pool commis-
sion when making a swap. Optimizing smart contracts can directly increase the
profitability of liquidity providers.

3. Pool fee value. Reducing the commission relative to competitors allows pool to
“intercept” more rational uninformed flow. On the other hand, an increase in com-
mission increases the pool’s income from arbitrage and “loyal” traders.

The choice of a specific blockchain has a significant impact: along with changes in
transaction gas costs, the block time often also differs, the built ecosystem and the char-
acteristics of user behavior and decentralized protocols look different. For this reason, a
logical conclusion can be drawn: to select the most optimal algorithms and parameters
of an AMM, it is necessary to take into account the blockchain on which this AMM will
operate.

Among these factors, the fee value in the pool is the easiest to change: in addition to
different fixed values, it is also possible to use more complex dynamic fee algorithms. In
this article, the following commission management options are proposed and tested using
simulation:

1. Fixed fee. The simplest option, which involves setting a specified commission value
in the pool (including the possibility of changing it in the future). This approach is
the simplest and cheapest, yet provides possibility to get good results using a lower
or higher commission depending on market conditions.

2. Volatility-based dynamic fee. The Algebra protocol uses a dynamic commission
based on the price volatility value over the last 24 hours. This approach is diffi-
cult to set up and incurs significant gas costs. Due to the possibility of setting a
high commission, it can show good results, but the high cost of gas can offset the
additional profitability.

3. Moving fee spread. A fixed fee, the spread of which “moves” relative to the price
in the pool, depending on the price movement. This approach can be helpful in
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discrimination against informed flow and thereby increase the profitability of the
pool, without significantly reducing its attractiveness for uninformed flow. At the
same time, the simplest implementation is also cheap in terms of gas.

4. Elastic fee (with shortcut arbitrage logic). A complex method of increasing the fee
depending on the size of the transaction (price impact), together with the withdrawal
of part of the income from arbitrage in favor of the pool. This approach is difficult
to implement, but in theory it can significantly increase the income of liquidity
providers by withdrawing part of the profits from arbitrage (reducing LVR).

Depending on how market conditions develop and what features a particular market
and blockchain have, one or another approach, or a combination of them, may be most
effective. More expensive gas forces a preference for simpler and cheaper approaches to
commission management; with a lower volume of random trading in the market, methods
aimed at increasing the pool’s profits from arbitrage become more important; With the
dominance of random trading, attracting volume with a small commission becomes more
important. In this case, usually the most profitable strategies are those aimed at attracting
uninformed flow along with discrimination against informed flow.

The results obtained demonstrate the strengths and weaknesses of the proposed ap-
proaches to commission management, and also formulate various options for market fea-
tures that affect the profitability of AMM. The fact that maximizing profits requires an
agile approach demonstrates the benefits of customizable AMM architectures such as Al-
gebra Integral. At the moment, there is no single silver-bullet-like approach that provides
guaranteed best income for liquidity providers. However, for each pool, taking into ac-
count the characteristics of the blockchain, the volume of liquidity, competitors and other
market conditions, it is possible to choose the optimal solution (or solutions) that will
provide the best efficiency for the pair. At Integral, we use exactly this approach: each
pool is analyzed and then connected to the appropriate plugin and corresponding fee value
or algorithm is used.
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